Mitigation solutions for low frequency structure borne noise

Stockholm, December 11, 2012 **Presented by Hamid Masoumi**

- Traffic generates vibrations:
 - In the ground at 10 to 40 Hz
 - Slab natural frequencies at 12 to 16 Hz
 - Results in a vibration amplification by a factor of 10

- Simplified equation (conservative):
 - $L_p = L_{v5} 22 \ [dB]$
 - Vibration level at floor or wall

$$L_{v5} = 20 \log_{10} (v/v_0) (v_0 = 1E-9 m/s)$$

Sound pressure

$$L_p = 20 \log_{10} (p/p_0) (p_0 = 2E-5 Pa)$$

 $L_{pA} = (A-weighted L_p) < L_{A,max} = 40 [dB]$ residential area

Vibration transmission mechanism

- The main problem is decomposed to:
 - 1. Road-Ground interaction:
 - Road type
 - Ground type
 - Vehicle type
 - 2. Transmissibility:
 - Ground type
 - 3. Ground-foundation interaction:
 - Ground type
 - Foundation type
 - 4. Building response:
 - Wall/floor type

Stockholm, 11 December, 2012

City

ush

Vibration transmission mechanism

TF_{GG}

• Road-Ground transfer function $TF_{RG} = L_{v1} - L_{v0}$

SEVENTH FRAMEWORK

- Transmissibility in the ground $TF_{GG} = L_{v3} L_{v1}$
- Ground-foundation transfer function $TF_{GF} = L_{v4} L_{v3}$
- Transmissibility in the building $TF_{FB} = L_{v5} L_{v4}$

 $L_{v5} = L_{v0} + TF_{RG} + TF_{GG} + TF_{GF} + TF_{FB}$ Or $L_{v5} = L_{v1} + TF_{GG} + TF_{GF} + TF_{FB}$

Vibration level L_v [dB] = 20 log₁₀ (v/v₀) (v₀ = 1E-9 m/s)

Stockholm, 11 December, 2012

Traffic-induced vibration mitigation SEVENTH FRAMEWORK

- Vibrations at a frequency range from 10 to 30 Hz
- The mitigation system :
 - (1) reducing the vibration amplitude by improving the soil around the vibration source, and diffracting the generated waves by trenches and barrier,
 - (2) shifting the frequency content of the induced vibrations and, reducing the energy of the transmitted wave by isolating barrier.

Vibration mitigation systems

- •The mitigation system :
 - reducing the vibration amplitude
 - reducing the energy of the transmitted wave
 - shifting the frequency content of the induced vibrations

Vibration mitigation by isolating barrier SEVENTH FRAMEWORK

- Efficiency parameters:
 - The height ratio $H_{\rm h} / \lambda_{\rm R}$
 - The width ratio W_b / λ_R
 - The distance ratio R_b / λ_R

where, $\lambda_{R} = C_{R} / f$

 $H_{\rm b} / \lambda_{\rm R} > 2.0$ $W_{\rm h}/\lambda_{\rm R} > 0.2$ $R_{\rm b} / \lambda_{\rm R} < 1.5$

 $A_r = u_{A-after} / u_{A-before} \le 0,25$

Brussels, March 5, 2012

Isolating barrier mechanism

- Reduction factor:
 - The impedance ratio:
 - The travelling time:

$$A_{r} = u_{t} / u_{i}$$

$$\alpha = \rho_{b}C_{b} / \rho_{s}C_{s} \qquad A_{r} \propto \frac{1}{(\alpha + \frac{1}{\alpha})}$$

$$t_{b} = d_{b}/C_{b} \qquad A_{r} \propto \frac{1}{t_{b}}$$

1-D bar element model

1-D modeling of isolating mechanism

Numerical modeling of isolating barrier

$$ILoss \ [dB] = 20 \times Log_{10} \left(\frac{PPV_{iso}}{PPV_{non-iso}}\right)$$

Stockholm, 11 December, 2012

11

- Validation of mitigation solutions for low frequency structure borne noise
 - Selecting a reference site and in-situ measurement
 - Numerical modeling for pre-dimensioning
 - Validation of prediction model by means of
 - Scaled test bench measurement with different barrier type will be examined:
 - Concrete barrier
 - Concrete-EPS-Concrete barrier

Vibration mitigation by isolating barrier

Location A: bus over a speed table

Location B: bus over a road joint

Stockholm, 11 December, 2012

 The soil has a Brussels formation with gray fine sand, lime, and lime sandstone.

Measurement at the selected site

• Transmissibility through the propagation path (TF_{GG} = L_{v3} - L_{v1}) Ground conditions : inhomogeneity; pipes; sewers; obstacles

Measurement at the selected site

- Ground-foundation interaction
 - Soil properties
 - Foundation type

Using a coupled FEM-BEM model

Stockholm, 11 December, 2012

sh

Using a coupled FEM-BEM model

Measurement setup

Stockholm, 11 December, 2012

- Soil treatment
 - Sand pluviation
 - Density test
 - Impedance test
 - SASW test

- Measurement setup
 - Excitation with a shaker
 - A random harmonic vibration
 - Frequency range from 100 to 900 Hz
 - Acceleration 100 mv/g

Brussels, March 5, 2012

Concrete barrier

Concrete-EPS-Concrete barrier

	Frequency band	Concrete barrier			Concrete-EPS-Concrete barrier		
Small-scale	f _m = 100 -1100	W _m = 0,04	H _m = 0,60	R _m = 0,15	W _m = 0,12	H _m = 0,4	R _m = 0,15
model	Hz	m	m	m	m	m	m
Full-scale	$f_{p} = 6,7 - 73$	W _p = 0,60	H _p = 9,0	R _p = 2,25	W _p = 3x0,6	H _p = 6,0	R _p = 2,25
N = 15	Hz	m	m	m	m	m	m
Full-scale N = 20	$f_{p} = 5,0 - 55$ Hz	W _p = 0,80 m	H _p = 12,0 m	$R_{p} = 3.0 \text{ m}$	$W_p = 3x0.8$ m	H _p = 8,0 m	R _p = 3,0 m

• "m" denotes to "small-scale model"

- "p" denotes to "full-scale prototype"
- N is the geometrical scale factor

Stockholm, 11 December, 2012

Creall a	concre	te barrier	concrete-EPS-concrete barrier		
Smail-Si	H _b = 0,60 [m]	W _b = 0,04 [m]	H _b = 0,40 [m]	W _b = 0,12 [m]	
Frequency band f _m [Hz]	Wavelength λ_{R} [m]	$\begin{array}{c} \text{Depth} \\ \text{ratio} \\ \frac{\text{H}_{\text{b}}}{\lambda_{\text{R}}} [-] \end{array}$	Width ratio $\frac{W_{b}}{\lambda_{R}}$ [-]	$\begin{array}{c} \text{Depth} \\ \text{ratio} \\ \frac{\text{H}_{\text{b}}}{\lambda_{\text{R}}} \end{array} \left[\text{-} \right] \end{array}$	Width ratio $\frac{W_{b}}{\lambda_{R}}$ [-]
100-300	0,5	1,2	0,08	0,80	0,24
300-500	0,25	2,4	0,16	1,60	0,48
500-700	0,167	3,6	0,24	2,40	0,72
700-900	0,125	4,8	0,32	3,20	0,96
900-1100	0,1	6,0	0,40	4,0	1,20

Stockholm, 11 December, 2012

CityHush

Small-scale test	Full-scale test N=15	Full-scale test N=20
Frequency band f _m [Hz]	Frequency band f _p [Hz]	Frequency band f _p [Hz]
100-300	6,7-20	5-15
300-500	20-33,3	15-25
500-700	33,3-46,7	25-35
700-900	46,7-60	35-45
900-1100	60-73,3	45-55

Mean value of insertion loss over the points behind the barrier: $ILoss [dB] = 1/(x_2 - x_1) \int_{x_1}^{x_2} ILoss dx$

Concrete barrier

Concrete-EPS-concrete barrier

CityHush

- Isolating barriers are introduced as a solution for traffic-induced vibration mitigation.
- A practical solution has been proposed for reducing the structure-borne noise in building.
- A numerical simulation is proposed for barrier design and evaluation of their efficiencies.
- Results of numerical simulation have been successfully validated by means of experimental small-scale test.

